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Abstract
Converging evidence from genetic studies and population genetics theory sug-
gest that complex diseases are characterized by remarkable genetic hetero-
geneity, and individual rare mutations with different effects could collectively
play an important role in human diseases. Many existing statistical models for
association analysis assume homogeneous effects of genetic variants across all
individuals, and could be subject to power loss in the presence of genetic hetero-
geneity. To consider possible heterogeneous genetic effects among individuals,
we propose a conditional autoregressive model. In the proposed method, the
genetic effect is considered as a random effect and a score test is developed to test
the variance component of genetic random effect. Through simulations, we com-
pare the type I error and power performance of the proposed method with those
of the generalized genetic random field and the sequence kernel association test
methods under different disease scenarios. We find that our method outperforms
the other two methods when (i) the rare variants have the major contribution
to the disease, or (ii) the genetic effects vary in different individuals or sub-
groups of individuals. Finally, we illustrate the new method by applying it to
the whole genome sequencing data from the Alzheimer’s Disease Neuroimaging
Initiative.
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1 INTRODUCTION

Substantial evidence from a wide range of diseases (eg, breast cancer and hearing loss) indicates that complex diseases
are characterized by remarkable genetic heterogeneity.1 Evolutionary studies also suggest that individually rare muta-
tions generated from each generation create vast genetic heterogeneity in human diseases and could collectively play a
substantial role in causing diseases. The recently developed whole-genome sequencing technology generates a deep cat-
alog of genetic variants, especially those rare variants, and allows researchers to comprehensively investigate their role
in human diseases. Although new technology holds promise for uncovering novel disease-associated variants, the mas-
sive amount of sequencing data and low frequency of rare variants bring tremendous analytical challenges to sequencing
data analysis. Further challenge comes from sequencing variants, especially those rare variants, which could be highly
heterogeneous: (1) the same gene may harbor many (hundreds of even thousands) different rare mutations; and (2)
the same variant may have heterogeneous effects in different individuals or subgroups of individuals.1 These degrees of
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genetic heterogeneity often have been neglected in existing statistical frameworks, adding another layer of difficulty to
the discovery process.

Many new statistical methods have been proposed to deal with the joint association analysis of single nucleotide vari-
ants (SNVs), including rare variants. The burden test,2-4 as a pioneer in testing the genetic association on sequencing data,
collapses all the genetic information through a weighted sum. The burden test performs well if the effects of SNVs are in
the same direction and same magnitude. Nevertheless, it is subject to power loss if the assumption fails. Similarity-based
methods have been proposed to address this issue. One of the most popular methods is the sequence kernel association test
(SKAT),5 which is a semi-parametric method. SKAT is closely related to the sum of square score (SSU) test,6 and can detect
both uni-directional and bi-directional genetic effects. More recently, a genetic random field model (GenRF)7 was pro-
posed in analyzing sequencing data for continuous phenotypes, and a generalized genetic random field model (GGRF)8

was proposed to generalize the random field model for other types of phenotypes. Most of these methods were based on
the idea that individuals with similar genotypes tend to have similar phenotypes. Compared with other similarity-based
methods (eg, SKAT), GenRF and GGRF have nice asymptotic properties, and can be applied to small-scale sequencing
studies without small-sample adjustment.

Most of the existing methods assume the disease under investigation as one unified phenotype with homogeneous
genetic causes. When genetic heterogeneity is present, the existing methods will likely yield attenuated estimates for
genetic variants with heterogeneous effects, leading to low testing power. To consider the genetic heterogeneity in
sequencing studies, we propose a conditional autoregressive (CAR) model. Different from the previous GGRF model,
which applies the conditional autoregressive model on the phenotypes directly, we use a linear mixed model with the
genetic effect being considered as a random effect to account for heterogeneous genetic effects. By using a score test for
variance components, it has advantage of computational efficiency since we only need to obtain estimators under the
null hypothesis. On the other hand, it shares a nice asymptotic feature with GenRF and GGRF, which makes it appeal-
ing for small sample size studies. Simulation studies also showed that our proposed method can have high power when
rare variants play an important role or when variants have different genetic effects among different individuals or sub-
groups of individuals. Therefore, CAR provides a powerful alternative approach to search for disease-associated variants,
especially those rare or having heterogeneous effects.

The remaining article is arranged as follow: In Section 2, we propose a conditional autoregressive model for genetic
association analysis of sequencing data and a score test for statistical inference. In Section 3, we conduct simulation
studies to compare the performance of our method with two existing methods (ie, SKAT and GGRF) under different
scenarios. Finally, in Section 4, we apply our model to the whole-genome sequencing data from the Alzheimer’s Disease
Neuroimaging Initiative.

2 METHODS

2.1 Motivation

Linear mixed models have been commonly used to assess the association of a set of SNVs with a continuous phenotype. It
models the effect of each SNV as a random effect and assumes the genetic effects of all SNVs in the set (eg, a gene) follow an
arbitrary distribution. By testing the variance component of the random effect, it evaluates the joint effects of SNVs in the
set on the phenotype of interest. One of the most popularly used linear mixed model for sequencing studies is the sequence
kernel association test (SKAT).5 It is a semi-parametric method that uses a kernel function to deal with high-dimensional
genetic data and uses a score-based variance component test to assess the association. While SKAT has many advantages,
such as being robust for the direction and magnitude of genetic effects, it does not consider the heterogeneous effects
of genetic variants among individuals or subgroups of individuals (eg, gender and race groups). If the disease of interest
undergoes heterogeneous genetic etiological processes (ie, genetic causes differ among individuals), the traditional linear
mixed model (eg, SKAT), which typically assumes the genetic effects are similar across all the samples, can suffer from
power loss. To consider the genetic heterogeneity in association analysis, we propose a conditional autoregressive model.
It considers the genetic effect of an individual as a random effect and therefore accounts for the genetic heterogeneity
among individuals.

All SKAT,5 genome-wide complex trait analysis (GCTA)9 and CAR, are based on the following linear mixed model:

y = X𝜷 + a + 𝝐,
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F I G U R E 1 An illustration of a Gaussian graphical model. For the CAR model, the graph represents a network of the genetic effects
among individuals. In the graph, each node stands for the genetic effect of an individual. The existence of an edge between two individuals
indicates dependence of genetic effects between these two individuals. This is characterized by the precision matrix in the joint normal
distribution of these genetic effects [Colour figure can be viewed at wileyonlinelibrary.com]

where a is the total genetic random effects of the individuals; X is the design matrix of covariates such as age, gender,
and 𝝐 is the random error. It is natural to assume the total genetic effect a follows a multivariate normal distribution with
a ∼ n(0, 𝜎2

a𝚺). A natural question is how to choose the covariance matrix 𝚺. In SKAT, 𝚺 = GWGT , where G is a matrix
of all SNVs and W = diag{w1,… ,wp} is a diagonal matrix containing the weights of the p genetic variants. In GCTA,9
the (i, j)th element in 𝚺 is defined to be

𝚺ij =
1
p

p∑
k=1

(gik − 2pk)(gjk − 2pk)
2pk(1 − pk)

,

where pk is the frequency of the reference allele for the kth SNV. Both methods use a direct way to define the marginal
covariance of the genetic effects between two subjects. For CAR model, we consider an indirect way to model the covari-
ance of the genetic effects. Specifically, if we use a graph to represent the connections of the genetic effects among the
individuals as shown in Figure 1, where a node in the graph represents a person’s genetic effect and an edge represents a
link between the genetic effects of two subjects. Due to the Gaussian assumption on the random effect a, an edge between
nodes i and j is missing if and only if ai ⟂ aj|a−i,j, or equivalently p(ai|a−i) = p(ai|a−i,j), which means that the effects
between the ith and the jth individual are independent when the effects of all other individuals are known. So it is worth
investigating the conditional distribution of ai|a−i.

A reasonable conditional model can be assumed as follow

ai|aj, j ≠ i ∼ 

(∑
j≠i

bijaj, 𝜏
2
i

)
,

By Brook’s lemma10 (details can be found in Appendix A), we can obtain

𝜋(a) ∝ exp
{
−1

2
aT𝚫−1(I − B)a

}
,

where B = [bij] is a matrix with bii = 0 and 𝚫 = diag{𝜏2
1 ,… , 𝜏2

n}. This shows that a ∼ n(0, (I − B)−1𝚫). The first thing
we need to ensure is that 𝚫−1(I − B) is symmetric. A simple sufficient condition for 𝚫−1(I − B) being symmetric is that
𝚫−1B is symmetric, that is,

http://wileyonlinelibrary.com
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bij

𝜏2
i

=
bji

𝜏2
j

for all i, j.

Given a similarity matrix S, this can be accomplished by setting bij = sij∕
∑

j≠i sij and 𝜏2
i = 𝜎2

a∕
∑

j≠i sij and the CAR model
becomes

ai|aj, j ≠ i ∼ 

(
1∑

j≠i sij

∑
j≠i

sijaj,
𝜎2

a∑
j≠i sij

)
. (1)

In such case, the joint distribution of a is

𝜋(a) ∝ exp
{
− 1

2𝜎2
a

aT(D − S)a
}

,

where D = diag
{∑

j≠1 s1j,… ,
∑

j≠n snj

}
. However, one issue is that D − S is singular since (D − S)1n = 0. Such impropri-

ety can be remedied by redefining the precision matrix of a as D − 𝛾S, where 𝛾 is chosen to make D − 𝛾S nonsingular. In
such case, (1) becomes

ai|aj, j ≠ i ∼ 

(
𝛾∑

j≠i sij

∑
j≠i

sijaj,
𝜎2

a∑
j≠i sij

)
, (2)

which will be used in the model defined in Section 2.2. In Appendix A, we also showed that D − 𝛾S is indeed invertible
when |𝛾| < 1.

The main difference between the CAR model and the other methods is that the precision matrix of the random effect
a, which is the inverse of the covariance matrix, is specified first. It is well-known that the (i, j)th element in the preci-
sion matrix is in fact the partial covariance between ai and aj given all the others. The generalized genetic random fields
(GGRF) model8 has a similar structure. A GGRF model is based on the idea that similar genotypes lead to similar pheno-
types, while a CAR model can be interpreted as that similar genotypes leads to similar genetic effects and the variations
among phenotypes is related to the variations among genetic effects of individuals.

In Section 2.2, a CAR model will be introduced to account for the genetic heterogeneity. In Section 2.3, a linear score
test for testing the variance component will be derived.

2.2 Model setup

Suppose that there are n subjects. Let yi be a quantitative trait for the ith subject. To relate the phenotype with genetic
variants, we consider the following linear mixed model, also known as the conditional autoregressive (CAR) model:

yi = xT
i 𝜷 + ai + 𝜖i, i = 1,… ,n (3)

ai|aj, j ≠ i ∼ 

(
𝛾∑

j≠i sij

∑
j≠i

sijaj,
𝜎2

a∑
j≠i sij

)
(4)

𝜖1,… 𝜖n ∼ i.i.d.  (0, 𝜎2), (5)

where xi = [xi1,… , xip]T is a vector of covariates of the ith subject; 𝜷 is the fixed effect of the covariates; ai is the genetic
random effect, and 𝜖i is the random error of the ith subject; 𝛾 measures the overall genetic correlation among all subjects.
A larger value of 𝛾 implies strong overall genetic correlation among all samples; sij is the genetic similarity between the
ith and the jth subjects, which is measured on a set of SNVs; 𝜎2

a measures the variation of the genetic effects.
As we have seen in Section 2.1, the joint distribution of a = [a1,… , an]T can be written as

a ∼ n(0, 𝜎2
a(D − 𝛾S)−1),
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where n denotes an n-dimensional multivariate normal distribution; S is the genetic similarity matrix, and D is a
diagonal matrix with diagonal elements being the row sums of S.

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 s12 s13 · · · s1n

s21 0 s23 · · · s2n

s31 s32 0 · · · s3n

⋮ ⋮ ⋮ ⋱ ⋮

sn1 sn2 sn3 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, D =

⎡⎢⎢⎢⎢⎢⎣

∑
j≠1 s1j ∑

j≠2 s2j

⋱ ∑
j≠n snj

⎤⎥⎥⎥⎥⎥⎦
. (6)

Therefore, model (3) can be written into the following matrix form:

y = X𝜷 + a + 𝝐 (7)

a ∼ n(0, 𝜎2
a(D − 𝛾S)−1) (8)

𝝐 ∼ n
(
0, 𝜎2In

)
, (9)

where y = [y1,… , yn]T is the phenotype and X = [x1,… , xn]T is the covariate matrix. Since all the genetic information
are contained in the total genetic random effects a, in order to test the association of a SNV set with the response, it is
sufficient to test H0 ∶ 𝜎2

a = 0.
Let Gi = [gi1,… , giK]T be the genotypes of K SNVs in a genetic region (eg, a gene) for the ith subject,

where gij, j = 1,… ,K is coded as additive, that is, {0, 1, 2}. Given the set of SNVs for subjects i and j, a com-
monly used kernel function measuring genetic similarity is the weighted identity-by-state (IBS) function,5 which is
defined by

s(Gi,Gj) =
K∑

k=1
𝜔k{2 − |gik − gjk|},

where 𝜔k is the prespecified weight for the kth variant and is usually a function of minor allele frequency (MAF). In our
model, we consider the scaled version of the weighted IBS similarity defined by

sij =
K∑

j=1

𝜔k{2 − |gik − gjk|}
2
∑K

k=1𝜔k
.

For the weights 𝜔k, we consider four types of weights: unweighted (UW) weights (ie, 𝜔k = 1), Beta distribu-
tion type of weights (BETA), weighted sum statistics type of weights (WSS) and logarithm of MAFs as weights
(LOG). The details of these four weights are given in Appendix C. Among these four weights, UW empha-
sizes the effects of common variants, while WSS focusing on the effects of rare variants. The effects of the
other two weights lie in between UW and WSS. LOG gives slightly more weights on common variants than
BETA.

To evaluate whether there is a genetic association between a SNV set and the trait of interest, we test H0 ∶
𝜎2

a = 0. By introducing the ratio between two variance components 𝜆 = 𝜎2
a∕𝜎2, it is equivalent to test H0 ∶ 𝜆 = 0 vs

H1 ∶ 𝜆 > 0.

2.3 Score test for variance component

In order to perform the hypothesis testing, we also need to consider the nuisance parameter 𝛾 . In the following discussion,
we consider two cases. In the first case, we treat 𝛾 as a fixed constant and use the linear score test.11 In the second case,
𝛾 is treated as an unknown nuisance parameter. A maximum statistic12 is proposed and the corresponding P-value is
obtained via a simulation-based method.
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2.3.1 𝛾 as a fixed constant

When 𝛾 is fixed as a constant (eg, overall mean of Pearson correlations between SNVs), a linear score test procedure11 can
be used to test H0 ∶ 𝜆 = 0 vs H1 ∶ 𝜆 > 0. Based on model (7), we have the marginal distribution of y:

y ∼ n(X𝜷, Ṽ),

where Ṽ = 𝜎2
a(D − 𝛾S)−1 + 𝜎2In = 𝜎2 [

In + 𝜆(D − 𝛾S)−1] ∶= 𝜎2V(𝜆). Let 𝜽 = [𝜆, 𝜎2, 𝜷T]T be the vector of unknown param-
eters, where 𝜎2 and 𝜷 are nuisance parameters. The nuisance parameter 𝜷 does not need to be estimated when we use the
restricted log-likelihood method. We can find a q × n matrix K such that KX = 0 and KKT = Iq, where q = n − rank(X).
Since y ∼ n(X𝜷, 𝜎2V(𝜆)), we obtain

y∗ ∶= Ky ∼ q(0, 𝜎2KV(𝜆)KT), (10)

where y∗ is known as the error contrast since E[y∗] = 0, which does not depend on X. The restricted log-likelihood
function, which provides an unbiased estimator of 𝜎2, can be formed as

𝓁(𝜆, 𝜎2|y∗) ∝ −
q
2

log 𝜎2 − 1
2

log |KV(𝜆)KT| − 1
2𝜎2 y∗T (KV(𝜆)KT)−1y∗. (11)

Moreover, by considering the profiled version of the restricted log-likelihood function in (11), we can get the profiled
REML of 𝜎2 for a given 𝜆:

�̃�2(𝜆) = arg max
𝜎2

𝓁(𝜎2|y∗, 𝜆) = 1
q

y∗T (KV(𝜆)KT)−1y∗.

Back substituting �̃�2(𝜆) into the restricted log-likelihood function (11), we get the profiled restricted log-likelihood
function as follow:

𝓁p(𝜆|y∗) ∝ −
q
2

log[y∗T (KV(𝜆)KT)−1y∗] − 1
2

log |KV(𝜆)KT|. (12)

The profiled restricted log-likelihood function is score and information unbiased and hence can be used for
inference.13 The score statistic S(𝜆) can be calculated as follow:

S(𝜆) =
𝜕𝓁p

𝜕𝜆
(13)

=
q
2

y∗T (KV(𝜆)KT)−1K 𝜕V(𝜆)
𝜕𝜆

KT(KV(𝜆)KT)−1y∗

y∗T (KV(𝜆)KT)−1y∗
− 1

2
tr

[
(KV(𝜆)KT)−1K𝜕V(𝜆)

𝜕𝜆
KT

]
(14)

=
q
2

y∗T (KV(𝜆)KT)−1K(D − 𝛾S)−1KT(KV(𝜆)KT)−1y∗

y∗T (KV(𝜆)KT)−1y∗
− 1

2
tr

[
(KV(𝜆)KT)−1K(D − 𝛾S)−1KT]

. (15)

Under the null hypothesis H0 ∶ 𝜆 = 0, V(𝜆) = V(0) = In so that the score statistic under H0 can be expressed as:

S(0) =
q
2

y∗T K(D − 𝛾S)−1KTy∗

y∗T y∗
− 1

2
tr

[
K(D − 𝛾S)−1KT]

.

To test H0 ∶ 𝜆 = 0 vs H1 ∶ 𝜆 > 0, it is equivalent to test H0 ∶ S(0) = 0 vs H1 ∶ S(0) ≠ 0. The exact way to calculate the
P-value of the test is given by

P(S(0) > s) = P

( q∑
j=1

𝜆jZ2
j > 0

)
, (16)
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where s is the observed value of S(0), 𝜆1,… , 𝜆q are the eigenvalues of the following matrix

B = K(D − 𝛾S)−1KT −
[

2s
q

+ 1
q

tr
(

K(D − 𝛾S)−1KT)]
Iq.

Z2
1 ,… ,Z2

q are independent chi-square-distributed random variables and the P-value can be calculated by using the Davis
method.14 The detailed derivation of (16) can be found in the appendix.

Remark 1. S(𝜆), in fact, does not depend on the choice of K. In fact, it can be shown that15

KT(
KV(𝜆)KT)−1K = V(𝜆)−1 − V(𝜆)−1X

(
XTV(𝜆)−1X

)−XTV(𝜆)−1 =∶ P(𝜆).

Then, we can write S(𝜆) as

S(𝜆) =
q
2

yTP(𝜆)(D − 𝛾S)−1P(𝜆)y
yTP(𝜆)y

− 1
2

tr
[
(D − 𝛾S)−1P(𝜆)

]
.

Under H0 ∶ 𝜆 = 0, P(𝜆) = P(0) = In − X(XTX)−XT and then

S(0) =
q
2

yTP(0)(D − 𝛾S)−1P(0)y
yTP(0)y

− 1
2

tr
[
(D − 𝛾S)−1P(0)

]
,

and B can be replaced by

B̃ = P(0)(D − 𝛾S)−1P(0) −
(

2s
q

+ 1
q

tr
[
(D − 𝛾S)−1P(0)

])
P(0).

2.3.2 𝛾 as an unknown nuisance parameter

In practice, 𝛾 is usually unknown so that it is necessary to consider how to test H0 ∶ 𝜆 = 0 vs H1 ∶ 𝜆 > 0 under such
case. One natural idea is to estimate 𝛾 and plug in the estimator (eg, MLE). However, since 𝛾 is embedded in the
variance-covariance matrix of y, it is unlikely that the maximum likelihood estimator of 𝛾 has an analytic form. More-
over, 𝛾 only appears in the alternative model, therefore it is not even possible to evaluate the MLE of 𝛾 under H0. Instead,
we construct a maximum score statistic for the association test.12 More specifically, following the notations we used in
Section 2.3.1, we have

S𝛾 (0) =
q
2

y∗T K(D − 𝛾S)−1KTy∗

y∗T y∗
− 1

2
tr

[
K(D − 𝛾S)−1KT]

,

where y∗ ∼ q(0, 𝜎2KV(𝜆)KT) with V(𝜆) = In + 𝜆(D − 𝛾S)−1. Now, note that under the null hypothesis H0 ∶ 𝜆 = 0, we
have y∗ ∼ q(0, 𝜎2Iq) so that 1

𝜎
y∗ ∼ q(0, Iq). We form the maximum score test statistic as follows:

T = sup
𝛾∈Γ

S𝛾 (0) (17)

= sup
𝛾∈Γ

qy∗T K(D − 𝛾S)−1KTy∗ − y∗T tr
[
K(D − 𝛾S)−1KT]

Iqy∗

2y∗T y∗
(18)

= 1

2
(

1
𝜎

y∗
)T (

1
𝜎

y∗
) sup

𝛾∈Γ

( 1
𝜎

y∗
)T

𝚺(𝛾)
( 1
𝜎

y∗
)

(19)

∶= (2||Z||2
2)

−1sup
𝛾∈Γ

ZT𝚺(𝛾)Z, (20)
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where Z = 1
𝜎

y∗ ∼ q(0, Iq), 𝚺(𝛾) = qK(D − 𝛾S)−1KT − tr
[
K(D − 𝛾S)−1KT]

Iq. 𝛾 ∈
(
1∕𝜇(1), 1∕𝜇(n)

)
, where 𝜇(1) < 𝜇(2) <

· · · < 𝜇(n) are the ordered eigenvalues of D− 1
2 SD− 1

2 ensuring that the matrix D − 𝛾S is nonsingular.16 Since the parame-
ter 𝛾 can be interpreted as a measurement of correlation coefficient, we set Γ =

(
1∕𝜇(1), 1∕𝜇(n)

)
∩ (−1, 1). To calculate the

P-value, let t be the observed value of T, then

P(T > t) = P

(
(2||Z||2

2)
−1sup

𝛾∈Γ
ZT𝚺(𝛾)Z > t

)
(21)

= P

(
sup
𝛾∈Γ

ZT (
𝚺(𝛾) − 2tIq

)
Z > 0

)
(22)

= P

(
sup
𝛾∈Γ

q∑
i=1

𝜆j(𝛾)Z2
j > 0

)
, (23)

where 𝜆1(𝛾),… , 𝜆q(𝛾) are the eigenvalues of

1
q
(𝚺(𝛾) − 2tIq) = K(D − 𝛾S)−1KT −

(
2t
q

+ 1
q

tr
[
K(D − 𝛾S)−1KT])

Iq

and Z2
1 ,… ,Z2

q are independent chi-square-distributed random variables with degrees of freedom 1. We use the following
procedures to approximate this probability:

1. Partition the index set Γ as 𝛾1 < 𝛾2 < · · · < 𝛾M . Γ is an open interval, denoted by (L,U). When we implement this step,
we choose a small 𝜖 > 0 and let 𝛾1 = L + 𝜖 and 𝛾M = U − 𝜖;

2. Generate an N × q matrix 𝚼 with each element being a 𝜒2
1 random variable;

3. For each 𝛾i, i = 1,… ,M,
Calculate 𝜆1(𝛾i),… , 𝜆q(𝛾i), which are the eigenvalues of 𝚺(𝛾i) − 2tIq;
Calculate

∑q
j=1𝜆j(𝛾i)𝚼kj, k = 1,… ,N, where 𝚼kj is the (k, j)th element of 𝚼;

4. Approximate the P-value by

P

(
sup
𝛾∈Γ

q∑
j=1

𝜆j(𝛾)Z2
j > 0

)
≈

#
{

k ∶ max𝛾i,i=1,…,M
∑q

j=1𝜆j(𝛾i)𝚼kj > 0
}

N
.

3 SIMULATION RESULTS

Simulation studies were conducted to compare the CAR model with the original GGRF model and the commonly used
SKAT method. For the CAR model, we evaluated both scenarios where 𝛾 is fixed (denoted by CAR.FIX) and 𝛾 is treated as
an unknown nuisance parameter (denoted by CAR.SUP). When 𝛾 is chosen to be a fixed constant, we set 𝛾 to be the overall
mean of Pearson correlations between SNVs. In this case, the nonsingularity of D − 𝛾S is guaranteed by Proposition 2 in
the Appendix. In the simulation, we compared the empirical type I error rates and empirical power of the three methods
under various disease models with heterogeneous genetic effects. In addition, we compared the empirical power of the
three methods under different percentage of causal SNVs and under the situation when the weights were misspecified. In
order to mimic the real structure of sequencing data, the genetic data used for simulation were simulated based on the real
sequencing data of Chromosome 17: 7344328-8344327 from the 1000 Genomes Project.17 The minor allele frequencies
(MAF) of SNVs in this region range from 0.046% to 49.954% with a distribution highly skewed to the right. Appendix C
summarizes the distribution of the MAF with MAF<0.05. For each setting, we simulated 1000 Monte Carlo replicates to
calculate the empirical type I error rates and the empirical power of the three methods. In each replicate, we randomly
selected a 30 Kb segment from the region and used all the genetic variants in that segment for the association analysis.

We first examined the type I error performances of the three methods. In the simulation, we considered two
significance levels, 𝛼 = 0.05 and 𝛼 = 0.01, under the following null model,

yi = 𝜀i ∼  (0, 1). (24)
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T A B L E 1 Empirical type I error rates under different weights at level 𝛼 = 0.05 and 𝛼 = 0.01 based on 1000 replicates

𝜶 = 0.05 𝜶 = 0.01

Methods UW BETA WSS LOG UW BETA WSS LOG

GGRF 0.053 0.062 0.055 0.058 0.015 0.010 0.010 0.010

SKAT 0.053 0.069 0.052 0.044 0.008 0.012 0.004 0.012

CAR.FIX 0.050 0.070 0.044 0.053 0.010 0.009 0.012 0.011

CAR.SUP 0.044 0.067 0.044 0.045 0.009 0.007 0.012 0.009

Note: Each cell in the table contains the empirical type I error rate. GGRF, SKAT, CAR.FIX, and CAR.SUP are the generalized genetic random field model,8 the
sequence kernel association test,5 the conditional autoregressive model with fixed nuisance parameter 𝛾 , the conditional autoregressive model with maximum
score test statistic, respectively.

T A B L E 2 Computation time of one iteration under the null model (24) and BETA weights for GGRF, SKAT, CAR.FIX, and CAR.SUP

GGRF SKAT CAR.FIX CAR.SUP

Computation time (s) 0.76 0.14 0.91 38.97

Table 1 summarizes the empirical type I error rates of the three methods under four different weights (ie, UW, BETA,
WSS, and LOG). As we observe from the results, the empirical type I error rates of GGRF, CAR.FIX, and CAR.SUP are
well controlled at the level of 0.05 or 0.01, while the type I error rate for SKAT is conservative under WSS (for 𝛼 = 0.05)
and LOG (for 𝛼 = 0.01). Because the score test of CAR and the test procedure of GGRF are exact test procedures without
any asymptotic approximations, the type I error rates of the two methods are well controlled.

The computation time of one iteration under the null model (24) and BETA weights for GGRF, SKAT, CAR.FIX, and
CAR.SUP is summarized in Table 2. As we can see, the computation time for GGRF, SKAT, and CAR.FIX are comparable.
CAR.SUP required more time for computation due to the grid search. We have already seen from Table 1 that CAR.FIX
and CAR.SUP have comparative performance in terms of empirical type I error. It will be seen below that they also have
similar performance in power. Therefore, we recommend using CAR.FIX for large data sets.

3.1 Simulation I: Heterogeneous genetic effects among individuals or subgroups

We first considered a complex disease scenario in which each individual has a different genetic effect, which we refer as
the heterogeneous genetic effect. The following model was used to simulate the phenotype:

yi =
K∑

k=1
w∗

kgi,kZi,k + 𝜀i, 1 ≤ i ≤ n, (25)

where K is the number of genetic variants in a 30 Kb segment; gi,k is the genotype of the kth SNV for individual i, coded as
additive (ie, gi,k = 0 for genotype AA, gi,k = 1 for genotype Aa and gi,k = 2 for genotype aa). We set the percentage of causal
SNVs as 50%. w∗

k = 0 if the kth genetic variant is not a causal variant and w∗
k = 𝜔k if the kth genetic variant is a causal

variant, where 𝜔k is the weight defined in section 2. Zi,1,… ,Zi,K , 1 ≤ i ≤ n are genetic effects for the ith individual, which
follow a normal distribution with mean 0 and standard deviation (SD) 𝜎Z. 𝜀1,… , 𝜀n are i.i.d. random variables distributed
as  (0, 1). Note that in (25), the coefficients of the genetic variants are unique for each individual, and therefore different
individuals could have different genetic effects.

When we conducted the simulations, the underlying weights were applied to all of the methods (GGRF, SKAT,
CAR.FIX, and CAR.SUP). For GGRF and SKAT method, the kernels were also specified as the weighted IBS kernel, which
is the same as the one used in CAR model.

Figure 2 summarizes the empirical power of three methods under different degrees of genetic heterogeneity. As we
observe from the simulation results, the CAR model outperforms the other two methods with the increasing level of
genetic heterogeneity (ie, increasing 𝜎Z). For instance, when common variants (ie, UW and LOG) have more contributions
to the phenotype, our model has substantial power increase with the increased level of genetic heterogeneity (ie, 𝜎Z), while
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F I G U R E 2 Empirical power comparisons of CAR, SKAT, and GGRF by varying the levels of genetic heterogeneity among individuals
under four different weights. The x-axis is the effect size 𝜎Z , used in the simulation. The effect sizes are chosen as 0.01, 0.05, 0.075, 0.1, 0.3, 0.5
for the UW and LOG weights, and the effect sizes are set as 0.0005, 0.00075, 0.001, 0.0015, 0.002 for the BETA and WSS weights

the power of SKAT and GGRF remain low even with the increased genetic effect. When rare variants play an important
role (ie, BETA and WSS), GGRF and SKAT have some power increase with the increased genetic effect, but still have
lower power than CAR. As also shown in Figure 2, CAR.FIX and CAR.SUP have very similar performance. Therefore,
for simplicity, the further analyses were performed based on CAR.FIX, in which we fix the nuisance parameter 𝛾 as the
overall mean of the correlation matrix of SNVs.

Next, we considered a scenario where genetic heterogeneity exist among subgroups (eg, ethnic groups). Under such
case, individuals within a group had homogeneous genetic effects, but the genetic effects among groups were different.
In this simulation, we partitioned the total number of individuals of 500 into 8 groups, with the number of individuals in
each groups being 200, 100, 50, 25, 40, 35, 45, and 5, respectively. Within each group, we used model (D.1) in Appendix D
to simulate the phenotypes, so that the effect sizes were different for different groups. Specifically, we set the effect sizes
𝜎Z as 0.0001, 0.0005, 0.002, 0.001, 0.003, 0.0001, 0.0005, and 0.002 for the eight groups for the BETA and WSS weights,
and 0.01, 0.05, 0.2, 0.1, 0.3, 0.01, 0.05, and 0.2 for the UW and LOG weights.
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T A B L E 3 Empirical power comparisons of GGRF,8 SKAT,5 and CAR based on 1000 Monte Carlo replicates

Methods UW BETA WSS LOG

GGRF 0.298 (1.505E-02) 0.180 (1.243E-02) 0.189 (1.226E-02) 0.148 (1.140E-02)

SKAT 0.328 (1.497E-02) 0.454 (1.622E-02) 0.805 (1.265E-02) 0.210 (1.287E-02)

CAR 0.378 (1.548E-02) 0.817 (1.248E-02) 0.952 (0.670E-02) 0.445 (1.611E-02)

Note: In the simulation, we simulated eight different subgroups with 𝜎Z = 0.0001, 0.0005, 0.002, 0.001, 0.003, 0.0001, 0.0005, 0.002 for BETA and WSS and
𝜎Z = 0.01, 0.05, 0.2, 0.1, 0.3, 0.01, 0.05, 0.2 for UW and LOG. The number in the parenthesis is the SD.

T A B L E 4 Empirical power comparisons of GGRF,8 SKAT,5 and CAR based on 1000 Monte Carlo replicates

Methods UW BETA WSS LOG

GGRF 0.201 (1.263E-02) 0.149 (1.093E-02) 0.154 (1.161E-02) 0.115 (1.024E-02)

SKAT 0.217 (1.288E-02) 0.374 (1.534E-02) 0.618 (1.545E-02) 0.149 (1.096E-02)

CAR 0.382 (1.576E-02) 0.672 (1.472E-02) 0.769 (1.342E-02) 0.428 (1.544E-02)

Note: In the simulation, we simulated 8 different subgroups with 𝜎Z = 0.0001, 0.0001, 0.0002, 0.005, 0.0003, 0.0005, 0.0001, 0.005 for BETA and WSS and
𝜎Z = 0.01, 0.01, 0.02, 0.5, 0.03, 0.05, 0.01, 0.5 for UW and LOG. The number in the parenthesis is the SD.

Table 3 summarizes the results of the simulation. Consistent with previous findings, CAR has higher power than the
other two methods for all four scenarios. SKAT has good power under the WSS weight, but has reduced power under
the other weights. While all three methods have low power when common variants play an important role (ie, UW and
LOG), CAR still performs better than SKAT and GGRF.

Since rare mutation occurs in a small number of individuals and could have a larger effect than common variants, we
also modified the effect sizes of the eight groups so that groups with a small number of individuals tended to have higher
effect sizes. Specifically, we set 𝜎Z as 0.0001, 0.0001, 0.0002, 0.005, 0.0003, 0.0005, 0.0001, and 0.005 for the eight groups
for the BETA and WSS weights, and 0.01, 0.01, 0.02, 0.5, 0.03, 0.05, 0.01, and 0.5 for the UW and LOG weights. Under
such setting, the groups with the sizes of 25 and 5 had the highest effect sizes.

From Table 4, we find that all three methods have some power losses compared to the previous cases, but the conclu-
sion is similar to the previous cases. CAR still outperforms the other two under all four scenarios. SKAT performs well
when WSS is used, while GGRF has a good performance under the UW weight.

3.2 Simulation II: Various causal SNV rates

Since the percentage of causal SNVs in a genetic region (eg, a gene) also have impact on the power of the association test,
in simulation II, we examined the performances of GGRF, SKAT, and CAR by varying the percentage of causal SNVs.
Similar as simulation I, the phenotypes were simulated by using the simulation model (25). In this simulation, we varied
the percentages of causal SNVs and investigated the effect of 50%, 40%, 30%, 20%, 10%, 5%, and 1% causal SNV rates on
the power performance of the three methods.

Figures 3 and 4 illustrate the empirical power of GGRF, SKAT, and CAR under different causal SNV rates and four
weights. Figure 3 summarizes the results under the WSS and BETA weights, that is, the weights focusing more on rare
variants. Overall, the CAR model outperforms the other two methods. As the causal SNV rates increase, the empirical
power of CAR increases significantly. The similar trend can also be found for SKAT, especially when the WSS weight are
used. For the BETA weight, SKAT also attains high empirical power but not as high as that of CAR. GGRF has lower
empirical power as compared to CAR and SKAT and its empirical power increases slowly with the increase of causal SNV
rates. We also find that under the WSS weight, both SKAT and CAR attain decent performance when the genetic causes
are heterogeneous (ie, increasing 𝜎Z) and the causal SNV rates are moderately high.

Figure 4 summarizes the results under the LOG and UW weights, that is, the weights focusing more on the effects
of common variants. Same as the case of rare variants, the CAR model performs the best for all the scenarios. Even the
empirical power of CAR under the LOG and UW weights is not high as those under the BETA and WSS weights, it can
still reach high power when the causal SNV rate is high. The CAR model could also gain more substantial power than the
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F I G U R E 3 Empirical power comparisons of CAR, SKAT, and GGRF with different causal SNV rates under the BETA weight and the
WSS weight. The SD 𝜎Z used in the simulation is gradually increased. 𝜎Z = 0.0005, 0.001, 0.002, 0.005 in each column from left to right

other two methods with the increased levels of genetic heterogeneity (ie, increased 𝜎Z). Neither SKAT nor GGRF performs
as well as they do under the WSS or BETA weights, even with high causal SNV rates and high genetic effects. As we can
see from Figure 4, if the common variants play an important role in disease phenotypes and have heterogeneous effects,
both SKAT and GGRF suffer from extreme power loss, while the CAR model could still obtain moderate or high power.

3.3 Simulation III: Misspecification of weights

In practice, we do not know whether common variants or rare variants play a more important role in the disease process.
Since the performance of GGRF, SKAT, and CAR depend on the prespecified weights, it is important to investigate whether
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F I G U R E 4 Empirical power comparisons of CAR, SKAT, and GGRF with different causal SNV rates under the UW weight and the
LOG weight. The SD 𝜎Z used in the simulation is gradually increased. 𝜎Z = 0.05, 0.1, 0.2, 0.5 in each column from left to right

these models could still obtain reasonable power when the weights are misspecified. We used similar simulation settings
as before except that we randomly selected 50 SNVs as the causal variants in this particular simulation.

We first focused on rare variants, and simulated phenotypes using either the WSS weight or the BETA weight. When
we applied GGRF, SKAT, and CAR to the simulation data, all the weights (UW, BETA, WSS, and LOG) were used so that
we were able to evaluate their performances under both misspecified and correctly specified weights.

Figure 5 summarizes the results when the underlying weights in the simulation are WSS and BETA. From Figure 5,
since WSS put extremely high weights to the rare variants, all the three methods attain high empirical power when the
weights are specified as WSS or BETA. As expected, all the methods have the highest empirical power when the weight
function is correctly specified (ie, WSS). We also find that neither SKAT nor GGRF performs well when the weight is
misspecified as UW or LOG. On the other hand, as we can see from the figures, as long as there is genetic heterogeneity,
CAR has a good power performance even though the weight is misspecified.
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F I G U R E 5 Empirical power comparisons of CAR, SKAT, and GGRF with misspecified weights when the true weight is BETA and
WSS. In each column from left to right, we used BETA, LOG, UW, and WSS weight, respectively

Same conclusions hold for BETA. Both GGRF and CAR will obtain highest power when the BETA weight is applied,
while SKAT reaches highest power when WSS is used. CAR outperforms SKAT and GGRF in all cases. With the increased
genetic heterogeneity, CAR retains high power even with misspecified weights. To conclude, in the case when the disease
is mainly caused by rare variants, both SKAT and CAR can have high power, but for SKAT, we need to use the right
weights (BETA or WSS).

Next, we focused on common variants and simulated phenotypes using UW and LOG. Figure 6 summarizes the results
based on LOG and UW. In the first row, the true weight used in the simulation is LOG. Since LOG also puts some weight
on rare variants, we find that SKAT has a good performance as compared with its performance under the UW weight.
However, SKAT attains highest power by using the WSS weight. This can be explained by the fact that WSS can help to
catch the heterogeneous genetic effect. Overall, GGRF has lower power than CAR and SKAT.

The same conclusion holds for the UW weight. As expected, CAR attains the highest power when the true weight (ie,
LOG) is specified. When LOG is the underlying weight, we can see from Figure 6 that there is no significant difference of
the four weights used in the CAR model. As expected, CAR attains high power when the specified weight functions focus
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F I G U R E 6 Empirical power comparisons of CAR, SKAT, and GGRF with misspecified weights when the true weight is LOG and UW.
In each column from left to right, we used BETA, LOG, UW, and WSS weight, respectively

on common variants (ie, UW and LOG). With the increased heterogeneity, CAR can obtain high power with the LOG or
UW weights. However, it could suffer from power loss when the weight is misspecified (ie, WSS and BETA). Overall, CAR
outperforms SKAT and GGRF, even when the weight is misspecified.

4 REAL DATA APPLICATIONS

We applied our method to the whole genome sequencing data from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
and performed a genome-wide gene-based association analysis. A total of 808 samples at the screening and baseline of
the ADNI1 and ADNI2 studies have the whole genome sequencing data, from which we extracted 21 069 genes based
on the GRCh 37 assembly. ADNI also provides pre-calculated volumes of cortical regions. We chose four of them as the
phenotypes of interests, which are hippocampus, entorhinal, whole brain, and ventricles. The motivation of choosing
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these four volumes as the phenotypes is from previous biological findings. More specifically, the hippocampus, a brain
area playing an important role in learning and memory, is especially vulnerable to damage at early stages of Alzheimer’s
disease (AD).18 The volume of hippocampus changes over time and could have a large impact on AD.19 The entorhinal
cortex is also crucial in declarative memories. In mild AD patients, the loss in the entorhinal volume is evident. The
entorhinal cortex is also highly correlated with the severity of the disease.20 Similarly, the whole brain volume decreases
significantly in patients with AD.21 The brain ventricles also play an important role in AD and it is well known that
ventricular volume is significantly higher in AD patients.22

Figure 7 plots the histograms of the four phenotypes used in the analysis. As we can see from the histograms, hip-
pocampus, entorhinal, and whole brain are nearly normally distributed. For ventricles, we first applied a normal quantile
transformation to the phenotype and then applied our method.
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F I G U R E 7 Histograms of the phenotypes used for real data analyses
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T A B L E 5 Top 10 hippocampus-associated genes and their corresponding P-values from different methods

CHR Gene name CAR SKAT GGRF

7 STK17A 2.09E-05 6.34E-01 3.79E-02

3 PEX5L 2.95E-05 3.02E-02 7.52E-01

11 LOC105369443 3.79E-05 9.78E-02 1.06E-01

5 KIF3A 1.10E-02 1.65E-04 9.42E-05

5 IL4 5.83E-01 1.07E-04 1.22E-04

19 SYT5 9.36E-02 2.38E-04 6.25E-04

5 CANX 4.31E-01 1.10E-03 2.68E-04

12 FBRSL1,MIR6763 2.01E-02 2.44E-04 3.05E-04

20 LOC100506384 3.46E-04 8.47E-02 1.89E-01

10 FRMPD2B 3.49E-04 3.11E-02 9.61E-03

We restricted our analyses to individuals with Caucasian ancestry due to the small sample size of non-Caucasian
samples and the issue of population stratification. In the analysis, age, gender, years of education, marriage status, and
APoE𝜀4 were used as covariates. After removing individuals with missing phenotypes or covariates, a total of 588 subjects
remained for the analysis. In this analysis, we also compared our method with SKAT and GGRF. The BETA weight was
chosen for all the three methods, and the linear kernel was used in SKAT.

Table 5 summarizes the top 10 genes (based on the P-values) associated with hippocampus found by the three methods
(CAR, GGRF, and SKAT). We rank the P-values for all three methods and summarize the 10 genes with the smallest
P-values along with their corresponding P-values for different methods. We found that the results of GGRF and SKAT are
similar and are different from that of CAR. This could be due to the fact that both methods are similar in terms of assuming
genetic homogeneity, while CAR is developed based on a different model, which accounts for genetic heterogeneity.
In addition to hippocampus, Appendix E also provides results of the top 10 genes related to entorhinal, ventricle and
whole brain. Given the limited sample size of the study, none of the association reached statistical significance after
multiple-testing adjustment.

5 DISCUSSION

We have proposed a conditional autoregressive model for genetic association analysis of sequencing data. Our simulations
show that the CAR model can obtain high power under the scenario (i) when rare variants are related to the phenotypes
and (ii) when genetic variants have different genetic effects among individuals or subgroups of individuals. Moreover, we
derive the exact form of the test statistic, which makes the method computationally efficient for large-scale sequencing
data analysis. Unlike SKAT, which uses the asymptotic distribution for its test statistic, the exact distribution of the CAR
test statistic under the null hypothesis is not conservative. Therefore, no additional small sample size adjustment is needed
for the CAR model.

In our simulations, 𝛾 is chosen as the average of the genetic correlation coefficients among all individuals. Alterna-
tively, we could also use the average of pairwise linkage disequilibrium (LD) correlation coefficient. Simulation results
find that there are no substantial differences between two values (results not shown). However, calculating LD correlation
coefficient is more time consuming than estimating the traditional correlation coefficient. It is also interesting to con-
sider the model when 𝛾 = 1, that is, assuming the genetic random effects are highly correlated. When 𝛾 = 1, the genetic
random effect is then modeled by an intrinsic random field.23 In this case, the joint distribution of the genetic random
effects is not a proper distribution so that traditional frequentist approach may not work well. One potential solution is
to use Bayesian method.23

The work introduced in this article focuses on the continuous phenotype with normal distribution. Neverthe-
less, the model can be extended to the case when the phenotypes follow distributions in the exponential family
by using the generalized linear mixed model (GLMM). One potential challenge of extending the CAR model to
GLMM is that the test statistic and the likelihood function may not have closed form, which requires an alternative
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approach (eg, Monte Carlo method) to numerically estimate both of them. This is a future work worth further
study.

6 SOFTWARE

The R code for the proposed CAR model, together with a sample input data set, are available on the website https://msu.
edu/~qlu/Software.html.
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APPENDIX A. SOME TECHNICAL DETAILS

In this section, we are going to provide some technical details used in the main text. The first one is to use Brook’s lemma
to show that we can obtain the joint density from conditional density. To begin with, we quote the Brook’s lemma.

Lemma 1 (10). Let 𝜋(x) be the density for x ∈ Rn and define Ω = {x ∈ Rn ∶ 𝜋(x) > 0}. Let x, x′ ∈ Ω, then

𝜋(x)
𝜋(x′)

=
n∏

i=1

𝜋(xi|x1,… , xi−1, x′i+1,… , x′n)
𝜋(x′i |x1,… , xi−1, x′i+1,… , x′n)

(A1)

=
n∏

i=1

𝜋(xi|x′1,… , x′i−1, xi+1,… , xn)
𝜋(x′i |x′1,… , x′i−1, xi+1,… , xn)

(A2)

Next, we establish how to transfer a conditional distribution to a joint distribution.

Proposition 1. Let a ∈ Rn be a random vector with

ai|aj, j ≠ i ∼ 

(∑
j≠i

bijaj, 𝜏
2
i

)
,

then the joint density function of a is given by

𝜋(a) ∝ exp
{
−1

2
aT𝚫−1(I − B)a

}
,

where B = [bij] is an n × n matrix with bii = 0 and 𝚫 = diag{𝜏2
1 ,… , 𝜏2

n}. This shows that a ∼ n(0, (I − B)−1𝚫).

Proof. Fix a′ = 0, then based on the first equation in the Brook’s lemma, we have

𝜋(a)
𝜋(0)

=
n∏

i=1

𝜋(ai|a1,… , ai−1, 0, 0)
𝜋(0|a1,… , ai−1, 0,… , 0)

(A3)

=
n∏

i=1

(2𝜋𝜏2
i )

− 1
2 exp

{
− 1

2𝜏2
i

(
ai −

∑i−1
j=1bijaj

)2
}

(2𝜋𝜏2
i )

− 1
2 exp

{
− 1

2𝜏2
i

(
−

∑i−1
j=1bijaj

)2
} (A4)
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=
n∏

i=1
exp

{
− 1

2𝜏2
i

(
a2

i − 2
i−1∑
j=1

bijaiaj

)}
(A5)

= exp

{
−1

2

n∑
i=1

a2
i

𝜏2
i

+
n∑

i=1

1
𝜏2

i

i−1∑
j=1

bijaiaj

}
. (A6)

Similarly, from the second equation in the Brook’s lemma, we have

𝜋(a)
𝜋(0)

= exp

{
−1

2

n∑
i=1

a2
i

𝜏2
i

+
n∑

i=1

1
𝜏2

i

n∑
j=i+1

bijaiaj

}
. (A7)

Based on (A6) and (A7), we know that
∑n

i=1
1
𝜏2

i

∑i−1
j=1bijaiaj =

∑n
i=1

1
𝜏2

i

∑n
j=i+1bijaiaj = 1

2

∑n
i=1

1
𝜏2

i

∑
j≠i bijaiaj. Hence the density

of a can then be expressed as

𝜋(a) ∝ exp

{
−1

2

n∑
i=1

a2
i

𝜏2
i

+ 1
2

n∑
i=1

1
𝜏2

i

∑
j≠i

bijaiaj

}
(A8)

= exp

{
−1

2

n∑
i=1

[
a2

i

𝜏2
i

−
∑
j≠i

bij

𝜏2
i

aiaj

]}
(A9)

= exp
{
−1

2
[
aT𝚫−1a − aT𝚫−1Ba

]}
(A10)

= exp
{
−1

2
aT𝚫−1(I − B)a

}
(A11)

where

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 b12 b13 · · · b1n

b21 0 b23 · · · b2n

b31 b32 0 · · · b3n

⋮ ⋮ ⋮ ⋱ ⋮

bn1 bn2 bn3 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝚫 =

⎡⎢⎢⎢⎢⎢⎣

𝜏2
1

𝜏2
2

⋱

𝜏2
n

⎤⎥⎥⎥⎥⎥⎦
.

This shows that a ∼ n(0, (I − B)−1𝚫) and the proof is finished. ▪

The next result we are going to show is that the precision matrix D − 𝛾S in the CAR model is indeed invertible when|𝛾| < 1. The proof of this result is based on some facts in matrix analysis. We first provide the definition of a diagonally
dominant matrix.

Definition 1 (Diagonally dominant matrix). An n × n real matrix J is diagonally dominant if

Δi(J) ∶= |Jii| − ∑
j≠i

|Jij| ≥ 0, for i = 1,… ,n. (A12)

If the inequality in (A12) is a strict inequality, then J is called a strictly diagonally dominant matrix.

Corollary 1 (24). Let A is an n × n matrix. If A is strictly diagonally dominant, then A is nonsingular.

Based on Corollary 1, it is easy to obtain the desired property.

Proposition 2. Let D − 𝛾S be as defined in the main text. Then it is nonsingular if |𝛾| < 1.

Proof. Based on Corollary 1, it suffices to check that D − 𝛾S is strictly diagonally dominant if |𝛾| < 1. Note
that
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J ∶= D − 𝛾S =

⎡⎢⎢⎢⎢⎢⎣

∑
j≠1 s1j −𝛾s12 · · · −𝛾s1n

− 𝛾s21
∑

j≠2 s2j · · · −𝛾s2n

⋮ ⋮ ⋱ ⋮

− 𝛾sn1 −𝛾sn2 · · ·
∑

j≠n snj

⎤⎥⎥⎥⎥⎥⎦
,

then since sij ≥ 0 for i, j by the definition of similarity, we have

Δi(J) = |Jii| − ∑
j≠i

|Jij| (A13)

=
||||||
∑
j≠i

sij

|||||| −
∑
j≠i

| −𝛾sij| (A14)

=
∑
j≠i

sij − |𝛾|∑
j≠i

sij (A15)

= (1 − |𝛾|)∑
j≠i

sij. (A16)

Hence

Δi(J) > 0 ⇔ |𝛾| < 1,

which finishes the proof. ▪

In the last part, we provide a detailed derivation of (16). It follows from the definition of S(0) in the main text that

P(S(0) > s) = P

(
q
2

y∗T K(D − 𝛾S)−1KTy∗

y∗T y∗
− 1

2
tr

[
K(D − 𝛾S)−1KT]

> s
)

(A17)

= P

(
y∗T K(D − 𝛾S)−1KTy∗

y∗T y∗
>

2s
q

+ 1
q

tr
[
K(D − 𝛾S)−1KT])

(A18)

= P

(
y∗T K(D − 𝛾S)−1KTy∗ > y∗T

(
2s
q

+ 1
q

tr
[
K(D − 𝛾S)−1KT])

Iqy∗ > 0
)

(A19)

= P

(
y∗T By∗ > 0

)
(A20)

= P

((
y∗

𝜎

)T

B
(

y∗

𝜎

)
> 0

)
(A21)

= P

( q∑
j=1

𝜆jZ2
j > 0

)
, (A22)

where B = K(D − 𝛾S)−1KT −
(

2s
q
+ 1

q
tr

[
K(D − 𝛾S)−1KT])

Iq and the last equality follows since under H0, y∗ ∼
q(0, 𝜎2Iq). 𝜆1,… , 𝜆q are eigenvalues of B.

APPENDIX B. DEFINITIONS OF WEIGHTS USED IN THE ARTICLE

We considered four different weight functions based on the minor allele frequencies (MAF).8 Among these four weight
functions, unweighted (UW) assigns same weights to both common and rare variants; weighted sum statistics type of
weight (WSS), on the other hand, put almost all the weights on rare variants and nearly no weights on the common
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variants. The Beta distribution type of weights (BETA) and the logarithm of MAFs (LOG) lie between UW and WSS with
LOG putting more weights on common variants than BETA.

1. Unweighted (UW)

𝜔k = 1, 1 ≤ k ≤ p

2. Beta distribution type of weights (BETA)

𝜔k = dbeta(MAFk, 1, 25)2, 1 ≤ k ≤ p,

that is, the weight is the square of the probability density of the Beta distribution with parameters
1 and 25.

3. Weighted sum statistics type of weights (WSS)

𝜔k = 1
MAFk(1 − MAFk)

, 1 ≤ k ≤ p

4. Logarithm of MAFs as weights (LOG)

𝜔k = − log10(MAFk), 1 ≤ k ≤ p

APPENDIX C. DISTRIBUTION OF MAF OF SEQUENCING VARIANTS ON CHROMOSOME 17
FROM THE 1000 GENOME PROJECT

In the simulation studies, to mimic the real structure of sequencing data, the simulated data was based on the sequencing
data from Chromosome 17: 7344328-8344327 from the 1000 Genome project.17 Figure C1 summarizes the distribution of
the MAF with MAF< 0.05.
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F I G U R E C1 The Distribution of minor allele frequency of in sequencing variants on chromosome 17 from the 1000 Genome
project
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APPENDIX D. EMPIRICAL POWER COMPARISON BETWEEN GGRF, SKAT, AND CAR
UNDER THE SCENARIO WHEN ALL INDIVIDUALS HAVE SAME GENETIC EFFECT

In the simulation studies, we also consider the case when all the individuals have the same genetic effect. That is we
simulate phenotypes using the following model

yi =
p∑

k=1
w∗

kgi,kZk + 𝜀i, 1 ≤ i ≤ n. (D1)

The only difference in model (D1) from model (3.6) in the main text is that in model (D1), Zk does not depend on the
individual i and we also assume that Z1,… ,Zn ∼  (0, 𝜎2

Z) so that all the individual have the same genetic effect. We
regard such situation as homogeneous genetic effects.

F I G U R E D1 Comparison of empirical power under different weights. The x-axis are the effect size 𝜎Z used in the simulation. For
weights UW and LOG, the effect sizes are chosen as 0.01, 0.05, 0.1, 0.15, 0.2 and for weights BETA and WSS, the effect sizes are chosen as
0.0005, 0.0006, 0.0007, 0.0008, 0.001
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F I G U R E D2 Comparison of empirical power under different weights. The x-axis are the effect size used in the simulation. For weights
UW and LOG, the effect sizes are chosen as 0.01, 0.05, 0.075, 0.1, 0.3, 0.5 and for weights BETA and WSS, the effect sizes are chosen as 0.0001,
0.00015, 0.0002, 0.0003, 0.0004, 0.0005
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Figure D1 summarizes the results of simulation under model (D1). From left to right, the weights are used as
UW, BETA, WSS, and LOG, respectively. According to the results, we can see that CAR.FIX and CAR.SUP still have
similar performances when LOG, BETA, or WSS weights are used, but CAR.SUP has low power increase when
UW is used. CAR performs the best when WSS is used and it also has moderate power when BETA is used. How-
ever, as we put more weights on the common variants, CAR suffers from power loss as we can see from the first
two figures. One thing we can notice that when the effect size 𝜎Z is large, it still has moderate or high power.
SKAT, in this case, has the consistent satisfactory power under all the four scenarios. For GGRF, it has high power
when common variants are put more weights, but with more weights putting on rare variants, its power decreases
significantly.

We also conducted simulations under the scenario when the genetic effects are one direction. Specifically, we still
used the simulation model (D1) to generate the data except that Zk is fixed at certain values. For UW and LOG,
Zk is chosen among the set {0.01, 0.05, 0.075, 0.1, 0.3, 0.5}, while for BETA and WSS, Zk is chosen among the set
{0.0001, 0.00015, 0.0002, 0.0003, 0.0004, 0.0005} Figure D2.

APPENDIX E. TOP 10 SIGNIFICANT GENES FOUND BY CAR, GGRF, AND SKAT FOR
ENTORHINAL, VENTRICLE, AND WHOLE BRAIN

Tables E1–E3 summarize the top 10 significant gene selected by the three methods associated with entorhinal, ventricle,
and whole brain respectively.

T A B L E E1 Top 10 entorhinal-associated genes and their corresponding P-values from different methods

CHR Gene name CAR SKAT GGRF

14 GSTZ1 2.48E-01 2.58E-04 2.10E-05

2 HPCAL1 6.62E-03 4.51E-05 3.50E-05

12 HOXC8 3.84E-02 1.07E-04 9.95E-01

10 KCNIP2 1.24E-04 9.80E-02 2.41E-01

3 CBLB 2.30E-01 1.64E-04 1.39E-03

18 RBFADN 2.11E-04 2.72E-01 6.89E-01

1 LOC100130331 9.66E-02 2.33E-04 4.43E-04

15 IDH2 6.73E-01 3.16E-04 2.10E-05

15 ADAL 3.29E-04 2.20E-01 1.19E-01

6 RPL7L1 8.24E-01 6.05E-04 4.26E-04

T A B L E E2 Top 10 ventrical-associated genes and their corresponding P-values from different methods

CHR Gene name CAR SKAT GGRF

5 LINC01033 6.63E-01 2.35E-04 9.96E-05

4 JCHAIN 7.05E-03 1.65E-04 1.22E-04

9 CTSL 1.16E-01 5.67E-04 1.35E-04

12 ATP23 2.94E-04 5.53E-01 7.80E-01

1 LOC100129534,MORN1 3.11E-04 6.98E-01 6.47E-01

4 SEL1L3 4.24E-04 6.68E-02 2.90E-02

3 PTPRG-AS1 5.27E-01 4.43e-04 4.94E-04

20 NRSN2 5.07E-04 3.09E-02 3.62E-01

12 MGST1 5.67E-04 2.19E-01 8.11E-01

13 RPL21,RPL21P28,SNORA27,SNORD102 4.17E-04 5.43E-04 5.67E-04
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T A B L E E3 Top 10 whole brain-associated genes and their corresponding P-values from different methods

CHR Gene name CAR SKAT GGRF

17 KRTAP16-1 7.44E-02 3.89E-03 3.12E-05

7 GALNT11 8.63E-03 5.96E-05 3.20E-05

9 NR5A1 5.25E-05 2.11E-01 3.31E-01

7 TRIM24 1.14E-03 6.29E-05 6.49E-05

11 CD81 4.46E-02 9.84E-05 8.03E-05

2 PPP1R7 1.10E-02 4.81E-04 1.18E-04

21 TRPM2-AS 2.51E-02 1.43E-04 3.76E-04

11 TSSC4 5.98E-02 1.56E-04 1.19E-04

4 AMTN 5.67E-04 1.27E-03 1.69E-04

5 CANX 1.99E-01 5.27E-04 2.63E-04


